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BAYESIAN MODEL SELECTION IN
SOCIAL RESEARCH

Adrian E. Raftery*

It is argued that P-values and the tests based upon them give
unsatisfactory results, especially in large samples. It is shown
that, in regression, when there are many candidate indepen-
dent variables, standard variable selection procedures can
give very misleading results. Also, by selecting a single
model, they ignore model uncertainty and so underestimate
the uncertainty about quantities of interest. The Bayesian
approach to hypothesis testing, model selection, and account-
ing for model uncertainty is presented. Implementing this is
straightforward through the use of the simple and accurate
BIC approximation, and it can be done using the output from
standard software. Specific results are presented for most of
the types of model commonly used in sociology. It is shown
that this approach overcomes the difficulties with P-values
and standard model selection procedures based on them. It
also allows easy comparison of nonnested models, and per-
mits the quantification of the evidence for a null hypothesis of
interest, such as a convergence theory or a hypothesis about
societal norms.

This research was supported by NIH grant no. SRO1HD26330. I would
like to thank Robert Hauser, Michael Hout, Steven Lewis, Scott Long, Diane
Lye, Peter Marsden, Bruce Western, Yu Xie, and two anonymous reviewers
for detailed comments on an earlier version. I am also grateful to Clem
Brooks, Sir David Cox, Tom DiPrete, John Goldthorpe, David Grusky, Jenni-
fer Hoeting, Robert Kass, David Madigan, Michael Sobel, and Chris Volinsky
for helpful discussions and correspondence. I may be contacted by email at
raftery@stat.washington.edu.

*University of Washington

111



112 ADRIAN E. RAFTERY
1. INTRODUCTION

P-values and significance tests based on them have traditionally been
used for statistical inference in the social sciences. In the past 15
years, however, some quantitative sociologists have been attaching
less importance to P-values because of practical difficulties and coun-
terintuitive results.

These difficulties are most apparent with large samples, where
P-values tend to indicate rejection of the null hypothesis even when
the null model seems reasonable theoretically and inspection of the
data fails to reveal any striking discrepancies with it. Because much
sociological research is based on survey data, often with thousands of
cases, sociologists frequently come up against this problem. In the early
1980s, some sociologists dealt with this problem by ignoring the results
of P-value-based tests when they seemed counterintuitive and by bas-
ing model selection instead on theoretical considerations and informal
assessment of discrepancies between model and data (e.g., Fienberg
and Mason 1979; Hout 1983, 1984; Grusky and Hauser 1984).

Then, in 1986, Bayesian hypothesis testing was brought to the
attention of sociologists, particularly using the simple BIC approxi-
mation (Schwarz 1978; Raftery 1986b). This seemed to lead to intu-
itively reasonable results when P-values did not, and retrospectively
validated some of the “common sense” decisions made in spite of P-
values by the researchers mentioned above. As a result, BIC has
become quite popular for model selection in sociology, particularly in
log-linear and other models for categorical data.

Two other difficulties with the use of P-values for model selec-
tion are also prevalent in sociology, although they are less obvious.
They arise when many statistical models are implicitly considered in
the earlier stages of a data analysis. This happens when many possi-
ble control variables are measured, and one must decide which ones
to include in the final model. Often this choice is made using a
strategy that involves a collection or sequence of P-value-based sig-
nificance tests, either informally by screening the r-values in the full
model with all variables included and removing the least significant
ones, or more formally by stepwise regression and its variants.

The first difficulty is that P-values based on a model selected
from among a large set of possibilities no longer have the same
interpretation that they did when only two models were ever consid-
ered (Miller 1984, 1990). Indeed, the use of P-values following
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model selection can be dramatically misleading (Freedman 1983;
Freedman, Navidi, and Peters 1988).

The second difficulty is that several different models may all
seem reasonable given the data but nevertheless lead to different
conclusions about questions of interest. This can happen even when
the dataset is moderately large, and striking examples have been
observed in educational stratification (Kass and Raftery 1995) and
epidemiology (Raftery 1993b). In this situation, the standard ap-
proach of selecting a single model and basing inference on it underes-
timates uncertainty about quantities of interest because it ignores
uncertainty about model form.

The Bayesian approach to model selection and accounting for
model uncertainty overcomes these difficulties. It was first used in
sociology in 1986 purely as a model selection criterion, and since
then it has been widely applied. Here my aim is to give the rationale
behind it, to show how it avoids the problems that plague P-values,
to explain how it can be used to account for model uncertainty as
well as to select a single “best” model, and to give some guidelines on
its practical implementation for specific model classes.

In Section 2 I review some of the practical difficulties with P-
values in empirical research and give examples. In Section 3 I give
the basic ideas of Bayesian hypothesis testing and Bayes factors. In
Section 4 I derive the BIC approximation and equivalent expressions
useful for specific models used in social research. I discuss the inter-
pretation of BIC and why it sometimes leads to different conclusions
than P-values. In particular, BIC tends to favor simpler models and
null hypotheses more than do P-values in large data sets. In Section 5
I show how the Bayesian approach can be used to account for model
uncertainty, and in Section 6 how it resolves the difficulties with P-
values discussed in Section 2. In Section 7 I discuss modeling strate-
gies, and in the Appendix I describe some valuable software.

2. PRACTICAL DIFFICULTIES WITH P-VALUES
2.1. P-values
The standard statistical approach to hypothesis testing assumes that
only two hypotheses, H, and H,, are envisaged, and that one of

these, the null hypothesis Hj, is nested within the other one. The
alternative hypothesis H, is represented by a probability model with
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d, unknown parameters 6 = (6,, . . . , 6, ). H, can be represented by
the same probability model as H, but with v constraints imposed on
0,8(0) =0(@G=1,...,v). Hycan represent not only exclusion

restrictions such as 6; = 0 but also linear restrictions on the parame-
ters of H;, such as 6, — 6, = 0 or nonlinear restrictions such as 6] + 62
= 1 (restrictions such as the latter arise in association models for
contingency tables).

A test statistic 7 is selected and calculated from the data at
hand, D; its observed value is denoted by # D). The null hypothesis
H, is rejected in favor of the alternative hypothesis H, if #(D) is more
extreme than would be expected if H, were true. This is implemented
by choosing a significance level «a (conventionally taken to be .05 or
.01), and rejecting H, if the probability of T being greater than or
equal to #(D) is small (i.e., less than «), given that H,, is true. More
formally, H, is rejected if

P = Pr[T = (D)|Hy] < a, (1)

in which case H, is adopted. The quantity P is called the P-value and
is often reported as an indication of the strength of the evidence
against H,,.

This approach is so widely applied that it is often used without
its basis being critically discussed. There are, however, several fea-
tures worth noting. A first point is that the significance level « has to
be determined. It has become conventional to use « = .05 or .01,
based on Sir Ronald Fisher’s experience with relatively small agricul-
tural experiments (on the order of 30 to 200 plots). Subsequent
advice has emphasized the need to take into account the power of the
test against H; when setting «, and to balance power and significance
in some appropriate way. However, a precise way of doing this is
lacking, and this advice seems to boil down to a vague suggestion
that « be lower for large sample sizes, a suggestion that is mostly
ignored in practice. We will see that for the sample sizes often found
in sociology, values of &« much lower than the conventional ones can
be appropriate.

A second point to note is that the whole standard hypothesis-
testing framework rests on the basic assumption that only two models
are ever entertained. This is far from being the case in most sociologi-
cal studies, which are often not experimental, and where a wide range
of possible control variables must be considered. In practice a selec-
tion is made among the variables, and each possible choice represents
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TABLE 1
Social Mobility Tables for 16 Countries, Father’s Occupation by Son’s Occupation.
The categories are white-collar, blue-collar, and farm.
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Australia Belgium France Hungary
292 170 29 497 100 12 | 2085 1047 74 479 190 14
290 608 37 300 434 7 936 2367 57 | 1029 2615 347
81 171 175 102 101 129 592 1255 1587 516 3110 3751
Italy Japan Philippines Spain

233 75 10 465 122 21 239 110 76 | 7622 2124 379
104 291 23 159 258 20 91 292 111 | 3495 9072 597
71 212 320 285 307 333 317 527 3098 | 4597 8173 14833

United States West Germany West Malaysia Yugoslavia
1650 641 34 | 3634 850 270 406 235 144 61 24 7
1618 2692 70 | 1021 1694 306 176 369 183 37 92 13

694 1648 644

1068 1310 1927

315 578 2311

77 148 223

Denmark Finland Norway Sweden
79 34 2 39 29 2 90 29 5 89 30 0
55 119 8 24 115 10 72 89 11 81 142 3
25 48 84 40 66 79 41 47 47 27 48 29

Source: Grusky and Hauser (1983).

a different model; with p possible variables, the number of candidate
models may reach 2”7, which can be huge (e.g., when p = 15, wP =
32,768). We will see in Section 2.3 that failing to take into account the
model selection process can yield very misleading results.

In the following sections I will outline some practical difficul-
ties with P-value-based tests in sociological applications and give
examples. I will return to the examples later in Section 6, after
outlining the Bayesian approach to the problem.

2.2. Large Samples

Table 1 contains a three-way 3 X 3 x 16 contingency table showing 3
X 3 social mobility tables for 16 countries, from Grusky and Hauser
(1984)!. The total sample size (n = 113,556) is very large.

IStrangely enough, although these data have been much analyzed, they
have never been published in the open literature. They are provided here to
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TABLE 2
Fit of Models to Cross-National Social Mobility Data (n = 113,556)
Model In G&H Deviance d.f. BIC
1 Independence Table 5, model 1 42970 64 42227
2 Lipset-Zetterberg Text, p. 22 18390 120 16997
3 Quasi-symmetry Table 5, model 2 150 16 -36
4 Saturated — 0 0 0
5 Explanatory Table 5, model 4 490 46 —-43

Source: Grusky and Hauser (1984).

Two hypotheses were of central interest in this study: the hy-
pothesis that mobility flows are the same in all industrialized coun-
tries (Lipset and Zetterberg 1959) and the hypothesis that the pat-
terns of mobility (but not the actual amounts) are the same. This is
the so-called FJH hypothesis (Featherman, Jones, and Hauser 1975),
and the postulated common pattern is that of quasi-symmetry. Two
other hypotheses are of interest as standards of comparison: the
“baseline” hypothesis of independence between father’s and son’s
occupation, and the hypothesis that there is no common pattern of
mobility across countries.

Each of these four hypotheses can be represented by a log-
linear model for the full three-way table, as explained by Grusky and
Hauser (1984). The deviance and degrees of freedom for each model
are shown in Table 2. Models 1, 3 and 4 form a nested sequence and
so a test of one of these models against the next one takes the
difference between their deviances and compares it with a y* distribu-
tion with degrees of freedom equal to the difference between the
degrees of freedom for the two models. Model 2 is also nested within
model 3.2

It is clear that models 1 and 2 are unsatisfactory and should be
rejected in favor of model 3.3 By the standard test, model 3 should
also be rejected, in favor of model 4, given the deviance difference of
150 on 16 degrees of freedom, corresponding to a P-value of about

facilitate reanalyses. They were first compiled by Hazelrigg and Garnier (1976),
and have recently been reanalyzed by Xie (1992).
2The fifth model in Table 2 will be discussed below in Section 7.
3Strictly speaking, a test of the Lipset-Zetterberg hypothesis should in-
volve only the nine industrialized countries in the sample, but imposing this
restriction does not change the results.
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107, Grusky and Hauser (1984) nevertheless adopted model 3 be-
cause it explains most (99.7 percent) of the deviance under the base-
line model of independence, it fits well in the sense that the differ-
ences between observed and expected counts are a small proportion
of the total, and it makes good theoretical sense. This seems sensi-
ble, and yet is in dramatic conflict with the P-value-based test.

This type of conflict often arises in large samples, and hence is
frequent in sociology with its survey datasets comprising thousands
of cases. The main response to it has been to claim that there is a
distinction between “statistical” and “substantive” significance, with
differences that are statistically significant not necessarily being sub-
stantively important. I do not find this distinction to be a satisfactory
panacea and believe that in most cases where the conflict has arisen,
including the Grusky-Hauser study, it is due to the miscalibration of
statistical significance using P-values, rather than to any real conflict
between statistical and substantive significance. When statistical sig-
nificance is properly calibrated, I have found that such a conflict
rarely arises.

2.3. Many Candidate Independent Variables

Most sociological studies are observational and aim to infer causal
relationships between a dependent variable and independent vari-
ables of interest. To minimize the possibility of observed associations
being due to other variables and hence spurious, other independent
variables that could induce spurious associations if they were left out
are also included in the regression-type models that are used. I will
call these “control variables.”

But which control variables should be included? Clearly this
choice should be guided by theory as far as possible. However, the
theory can be somewhat weak and often produces only a rather long
“laundry list” of possible control variables suggested by various theo-
retical arguments. This is especially the case when the study of a
social phenomenon is in its early stages and the theory is still weak.
Later, when an area of study has matured, the theory tends to be
stronger and knowledge of which to control for tends to be firmer,
based on the accumulated research of a community of investigators.

Typically, some choice is made and results with one or more
subsets of the laundry list are presented. One would like to make the
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choice on theoretical grounds, but there is usually little basis for this,
as the theory or theories have already been used to establish the
initial laundry list and often do not provide a basis for excluding
variables from it. It is well known that including a control variable
will not affect the estimation of the coefficient of the main indepen-
dent variable of interest if the control variable is statistically indepen-
dent of it or of the dependent variable. It would be nice to be able to
use this fact to eliminate unnecessary control variables, but such
independence usually is not known a priori and has to be assessed
from the data.

We therefore have to fall back on statistical methods for choos-
ing the control variables. Various methods are in common use. One
is to always include the full laundry list. When this is long, however,
and includes many variables that have little or no effect, the precision
of estimates of parameters of interest can be hurt (e.g., Bishop,
Fienberg, and Holland 1975, pp. 310-15); see Section 2.4 for an
example.

Another common approach is to first fit the full model, screen
the t-statistics for the parameters, remove the variables for which
these are small, and then reestimate the resulting, reduced, model. I
will call this the “screening” method. A further method (included in
many statistical software packages) is stepwise variable regression, in
which variables are added one at a time starting from the null model
(forward selection), eliminated one at a time starting from the full
model (backward elimination), or a mixture of the two, such as
Efroymson’s stepwise regression algorithm. Other methods include
minimizing Mallows’ C, and maximizing the adjusted R?; see Miller
(1990) for an account of these and other variable selection methods
in regression.

What these methods have in common is that they select one
model out of the many possibilities, and then proceed as if that
were the only model that had ever been considered. This can yield
very misleading results, as pointed out by Freedman (1983), Freed-
man, Navidi and Peters (1988), Fenech and Westfall (1988), and
Miller (1984, 1990). The reason is that by choosing among a large
number of models one increases the probability of finding “signifi-
cant” variables by chance alone. The sampling properties of these
model selection methods (as distinct from those of the individual
tests that make them up) are unknown in general, and there is little



BAYESIAN MODEL SELECTION IN SOCIAL RESEARCH 119

theoretical rationale for preferring one of the methods to the oth-
ers, although they often give different answers to the questions of
interest; see Section 2.4.

This is clearly illustrated by a simple simulation experiment of
Freedman (1983), which is similar in several respects to typical socio-
logical studies. In his words:

A matrix was created with 100 rows (data
points) and 51 columns (variables). All the entries in
this matrix were independent observations drawn
from the standard normal distribution. The fifty-first
column was taken as the dependent variable Y in a
regression equation; the first 50 columns were taken
as the independent variables X, . . . , X;,. By con-
struction, then, Y was independent of the X’s. Ide-
ally, R? should have been insignificant, by the stan-
dard F test. Likewise, the regression coefficients
should have been insignificant, by the standard ¢ test.

I replicated his experiment and obtained results similar to his.
The data were analyzed in two ways, representing perhaps the two
most common approaches to variable selection in sociology. The first
way consisted of two passes. In the first pass, Y was regressed on all
50 of the X’s, with the following results:

* R*=0.60, P = 0.09;

» 21 coefficients out of the 50 were significant at the .25 level (i.e., ||
> 1.15);

» 7 coefficients out of the 50 were significant at the .05 level (i.e., [f|
> 1.99).

Only the 21 variables whose coefficients were significant at the
.25 level were included in the second pass. The results were as follows:

* R = 0.50; P = 0.00001;

* 20 coefficients out of the 21 were significant at the .25 level;
* 14 coefficients out of the 21 were significant at the .05 level;
* 6 coefficients out of the 21 were significant at the .01 level.
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TABLE 3

Stepwise Regression Results for Simulated Noise
Variable Coefficient t P
Intercept 0.01 0.05 .956
X 0.30** 2.80 .006
X6 —0.23* -2.00 .049
X6 —0.23* -2.16 .034
Xy 0.34** 2.84 .006

*P < .05

**P < .01

In addition, a battery of diagnostic displays and tests (e.g., Weisberg
1985) showed no evidence of model inadequacy such as outliers,
nonlinearity, heteroscedasticity or autocorrelation in the residuals.

In the words of Freedman (1983), “the results from the sec-
ond pass are misleading indeed, for they appear to demonstrate a
definite relationship between Y and the X’s, that is, between noise
and noise.” Nevertheless, this sort of procedure is often followed in
sociology (and laundry lists of 50 variables are not atypical), and
many a social researcher would feel confident about presenting such
findings.

Stepwise regression does not help. Table 3 shows the results: a
four-variable model with R?> = 0.18 and P = 10%, and coefficients
that are all significant at the .05 level (with two also significant at the
.01 level). The minimum C, and adjusted R? methods also lead to
models with too many predictors and highly significant F statistics.

2.4. Model Uncertainty

When many models are initially considered, it often happens that
several of them fit the data almost equally well, or that different
models are arrived at by different model selection methods. It can
then happen that different models, all of them defensible, lead to
different answers to the main questions of interest.

The analyst then has three main options. The first is to pick
one model and adopt the conclusions that flow from it rather than
from the other defensible models; this is somewhat arbitrary. The
second option is to present the analyses based on all the plausible
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models without choosing between them; while not fully satisfactory,
this seems better than the first option. The third possibility, which I
will develop in later sections, is to take account explicitly of model
uncertainty when drawing conclusions.

To show how the problem can arise, consider the criminologi-
cal study by the economist Isaac Ehrlich (1973), which was one of the
earliest systematic efforts to determine whether greater punishments
reduce overall crime rates. Up to the 1960s, criminal behavior was
traditionally viewed as deviant and linked to the offender’s presumed
exceptional psychological, social, or family circumstances. Becker
(1968) and Stigler (1970) argued, on the contrary, that the decision to
engage in criminal activity is a rational choice determined by its costs
and benefits relative to other (legitimate) opportunities. Ehrlich
(1973) developed this argument theoretically, specified it mathemati-
cally, and tested it empirically using aggregate data from 47 U.S.
states in 1960. Errors in Ehrlich’s empirical analysis were corrected
by Vandaele (1978), who gave the corrected data, which we use
here.*

Ehrlich’s theory goes as follows. The costs of crime are related
to the probability of imprisonment and the average time served in
prison, which in turn are influenced by police expenditures, which
may themselves have an independent deterrent effect. The benefits
of crime are related to both the aggregate wealth and income inequal-
ity in the surrounding community. The expected net payoff from
alternative legitimate activities is related to educational level and the
availability of employment, the latter being measured by the unem-
ployment and labor force participation rates. This payoff was ex-
pected to be lower (in 1960) for nonwhites and for young males than
for others, so that states with high proportions of these were ex-
pected also to have higher crime rates. Vandaele (1978) also included
an indicator variable for southern states, the sex ratio, and state
population as control variables.

We thus have 15 candidate predictors of crime rate (Table 4),
and so potentially 21 = 32,768 different models. As in the original
analyses, all analyses were done in terms of the natural logarithms of

“Ehrlich’s study has been much criticized (e.g., Brier and Fienberg 1980)
and here I use it purely as an illustrative example. For economy of expression, I
will use causal language and speak of “effects,” even though the validity of this
language for these data is dubious.
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TABLE 4
Variables in Crime Data

Variable

1 Percent of males 14-24

2 Indicator variable for southern state

3 Mean years of schooling

4 Police expenditure in 1960

5 Police expenditure in 1959

6 Labor force participation rate

7 Number of males per 1000 females

8 State population

9 Number of nonwhites per 1000 people
10 Unemployment rate of urban males 14-24
11 Unemployment rate of urban males 35-39
12 GDP
13 Income inequality
14 Probability of imprisonment
15 Average time served in state prisons

the variables. Standard diagnostic checking did not reveal any striking
violations of the assumptions underlying normal linear regression.

Interest focuses on the significance and size of the coefficients
for variables 14 and 15, respectively the probability of imprisonment
and the average time served in state prisons. Ehrlich (1973) did not
use statistical model selection methods but instead analyzed two re-
gression models chosen in advance on theoretical grounds.

Table 5 shows results from six models selected using methods
discussed so far. The statistically chosen models 2, 3, and 4 all give
high and similar values of R* and share many of the same variables,
while Ehrlich’s theoretically chosen models 5 and 6 fit less well.
There are striking differences, indeed conflicts, between the results
from different models. Even the statistically chosen models, despite
their superficial similarity, lead to conflicting conclusions about the
main questions of interest.

Consider first the effect of X,, the probability of imprison-
ment, on the crime rate. All analyses and models concur in saying
that this does have an effect, so interest focuses on estimating its size.
To aid interpretation, recall that all variables have been logged, so
that B;, = —.30 means roughly that a 10 percent increase in the
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probability of imprisonment produces a 3 percent reduction in the
crime rate, all else being equal. The estimates of 3, fluctuate wildly
between models. The stepwise regression model gives an estimate
that is about one-third lower in absolute value than the full model, a
difference that may be large enough to be of policy importance; this
difference is equal to about 1.7 standard errors. The Ehrlich models
give estimates that are about one-half higher than the full model, and
more than twice as big as those from stepwise regression (in absolute
value). There is clearly considerable model uncertainty about this
parameter.

Another point of interest, not shown in Table 5, is that the
standard error of §3,, (and also of the other coefficients) is smaller for
the more parsimonious models. For the full model, it is .098, while
for the stepwise regression model it is .066. Thus it could be argued
that retaining the additional nonsignificant variables in the full model
reduces the efficiency of estimation of 8,, by a factor of (.066/.098)* =
.45, and so is equivalent to throwing away more than half the data.

Now let us turn to S5, the effect of the average time served in
state prisons. Whether this is significant at all is not clear, and r-tests
based on different models lead to different conclusions. In the full
model it has a nonsignificant P-value of .133, while stepwise regres-
sion leads to a model that does not include the variable at all. On the
other hand, Mallows’s C, leads to a model in which it is just signifi-
cant at the .05 level, whlle with adjusted R? it is again not significant.
In Ehrlich’s models, by contrast, it is highly significant.

Together these results paint a confused picture about 8,5, and
there seem to be no frequentist results to help sort it out. I will argue
that the confusion can be resolved by taking account explicitly of the
model uncertainty.

2.5. Nonnested Hypotheses, and Evidence for the Null Hypothesis

Often, in sociology, competing hypotheses represent quite different
views of the phenomenon being studied and cannot easily be neatly
represented by nested statistical models. For instance, in the crime
example of the preceding section, one hypothesis might be that crimi-
nal behavior is deviant and explainable by the criminal’s own charac-
teristics, while a competing hypothesis would be that it is a rational
choice. Adjudicating between such hypotheses often involves com-
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paring nonnested models, and so the standard theory of Section 2.1
breaks down.

One way around this has been proposed by Cox (1961, 1962);
it has been applied to sociological problems by Weakliem (1992) and
Halaby and Weakliem (1993). Cox’s approach, which has spawned a
large literature, tends to be cumbersome to implement and requires
the often arbitrary designation of one of the two nonnested models
as the null hypothesis. One way around this arbitrariness is to carry
out two tests rather than one, with each model in turn as the null
hypothesis. However, there is no guarantee of getting the standard
kind of result of a test, namely rejection of one model and non-
rejection of the other. Both models may fail to be rejected, in which
case it is not clear how to make inferences about quantities of inter-
est, especially if the two models lead to different conclusions. Both
models may be rejected (as often happens with large samples), in
which case the tests do not provide a comparison between the two
models.

Another difficulty is that standard significance tests allow one
either to reject the null hypothesis or to fail to reject it, but they do
not provide any measure of evidence for the null hypothesis. Some-
times, however, sociological theories specify that something is the
same across different groups, and thus the null hypothesis is the
hypothesis of interest. One example is the Lipset-Zetterberg hy-
pothesis referred to earlier in Section 2.2, that social mobility flows
are the same in all industrialized countries. Another is the hypothesis
that all sections of U.S. society now obey a two-child norm, accord-
ing to which most couples have two children and there is very little
variation between socioeconomic groups in average completed fam-
ily size (among those who have any children) (Lye and Greek, 1994).

A standard test allows us to say only that the data have failed
to reject our null hypothesis of interest but gives no indication of
whether the data support it or not. A test can fail to reject a null
hypothesis either because there is not enough data, or because the
data do support it, but it does not allow us to distinguish between
these two different situations.

Difficulties with P-values and the associated significance tests
have been much discussed in the scientific literature. The reader
edited by Morrison and Henkel (1970) compiled about 30 important
pre-1970 articles, the majority of them by sociologists; they are still
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worth reading. They referred a great deal to the problems with large
samples, but talked very little about the other difficulties discussed
here; they did not suggest alternatives that would seem fully satisfac-
tory nowadays. Leamer (1978) was the first to discuss in depth the
difficulties with empirical model-building using significance tests. Re-
cent social science references include Johnstone (19904, b).

3. BAYESIAN HYPOTHESIS TESTING

In this section, I first briefly review Bayesian statistical parameter
estimation, and then introduce Bayes factors, which form the basis
for Bayesian hypothesis testing.

3.1. Bayesian Estimation

Bayesian estimation expresses all uncertainty, including uncertainty
about the unknown parameters of a model, in terms of probability,
and it views unknown parameters as random variables. Thus all re-
sults in Bayesian statistics follow directly from elementary probabil-
ity theory, notably the definition of conditional probability, Bayes’
theorem, and the law of total probability.

We start with a probability model for the data D, which is
specified by a vector of d unknown parameters @ = (6, . . ., 6,).
Before any data are observed, our beliefs and uncertainty about 6
are represented by a prior probability density p(8). The probability
model is specified by the likelihood p(D|8), which is the probability
of observing the data D given that @ is the true parameter.

Having observed the data D, we update our beliefs about 6
using Bayes’ theorem to obtain the posterior distribution of @ given
the data D, namely

p(6|D) = p(D|6)p(8)/p(D), )

where p(D) = [ p(D|0)p(68)de, by the law of total probability. For
estimation purposes we need to know p(6|D) only up to a constant of
proportionality, and since p(D) does not involve @ it can be omitted
from equation (2), which is then written

p(6|D) < p(D[0)p(6). (3)

Thus the posterior distribution is proportional to the likelihood times
the prior.
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The posterior distribution, p(6|D), contains all the informa-
tion needed to make inference about 6. The only question is how
best to summarize and communicate that information. Often interest
focuses on the individual parameters (i.e., the components of ).
The posterior distribution of a component of 0, say 6, follows from
the law of total probability by integrating out the other components,
so that

P(91|D) = fp(0|D)d02d03. . db,. 4)

The univariate distribution (4) contains all the information
needed to make inferences about 6. It can be summarized in various
ways. In my experience, the mosts useful summaries are the poste-
rior mode—i.e., the value of 8, that maximizes p(6,|D) and so is the
most likely value given the data—and the .025 and .975 quantiles,
which define a 95 percent Bayesian confidence interval. The poste-
rior standard deviation is also useful, as a Bayesian analogue of the
standard error. The posterior mean is also often used and is usually
close to the posterior mode.

Bayesian inference has been controversial because it uses the
prior distribution, p(@), which is subjectively determined by the user.
However, in large samples this has very little influence: Its contribu-
tion to the posterior mean and variance is on the order of (1/n)-th of
the total, where n is the sample size.

In large samples, the posterior mode is very close to the
maximum likelihood estimator (MLE), and Bayesian confidence
intervals are very similar to standard non-Bayesian confidence inter-
vals. Asymptotically, in regular models,’ the posterior distribution
is multivariate normal with mean at the MLE and variance matrix
equal to the inverse (observed or, less accurately, expected) Fisher
information matrix. Thus, for estimation in regular models with
large samples, Bayesian and maximum likelihood methods give an-
swers that are essentially the same. The answers can be different,
however, for testing and model selection, for estimation in non-
regular models, and with very small samples.

SA regular statistical model is one in which the MLE is asymptotically
normal with mean at the true value and variance matrix equal to the inverse
expected Fisher information matrix. A simple example of a nonregular model is
that in which the data are independent and uniformly distributed between 0 and
0, and 6 is unknown. Then the MLE of 6 is equal to the largest observation and
does not have the usual asymptotic distribution (Kotz and Johnson 1985, p. 346).
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Edwards, Lindman and Savage (1963) gave what remains an
excellent and delightfully written introduction to Bayesian statistics
for a social science audience, while Press (1989) and Lee (1989) are
accessible accounts in book form. For a more advanced and theoreti-
cal treatment, but one that is still practically motivated, see Ber-
nardo and Smith (1994).

3.2. Bayes Factors

Suppose now that we want to use the data D to compare two compet-
ing hypotheses, which are represented by the statistical models M,
and M,, with parameter vectors 6, and 6,. They may be nested, but
need not be. Then, by Bayes’ theorem, the posterior probability that
M, is the correct model (given that either M, or M, is) is

_ P(D|M1)P(M1)
p(D |M1)P(M1) + P(D‘Mz)P(Mz),

where p(D|M,) is the (marginal) probability of the data given M, (see
below), and p(M,) is the prior probability of model M, (k = 1,2). A
similar expression holds for p(M,|D) and, by construction, p(M,|D)
+ p(M,|D) = 1.

In equation (5), p(D|M,) is obtained by integrating (not maxi-
mizing) over 8, i.e.,

p(M,|D) ®)

p(DIM,) = [ p(D|6,, M,)p(6,|M,)d6, (6)
= [ (likelihood X prior)dé;,

where p(D|@;, M,) is the likelihood of @, under model M;. I will call
this quantity, p(D|M,), the integrated likelihood for model M; it has
also been called the marginal likelihood, the marginal probability of
the data, and the predictive probability of the data.

The extent to which the data support M, over M, is measured
by the posterior odds for M, against M,—that is, the ratio of their
posterior probabilities. By equation (5), this is

p(My|D) _ [P(D|M2) ] [p(Mz) ]
p(M,|D) p(DIM,) 1 L p(M))

(7
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The first factor on the right-hand side of equation (7) is the ratio of
the integrated likelihoods of the two models and is called the Bayes
factor for M, against M,, denoted by B,,. The second factor on the
right-hand side of (7) is the prior odds, and this will often be equal to
1, representing the absence of a prior preference for either model—
that is, p(M,) = p(M,) = ¥. Thus equation (7) can be written

Posterior odds = Bayes factor X Prior odds. (8)

It follows that the Bayes factor is equal to the posterior odds when
the prior odds are equal to 1.

When B,, > 1, the data favor M, over M, and when B,; <1 the
data favor M,. The use of Bayes factors to compare scientific theories
was first proposed by Jeffreys (1935), and in 1961 he proposed the
following rules of thumb for interpreting B,, (Jeffreys 1961, Appen-
dix B): When 1 = B,, = 3, there is evidence for M,, but it is “not
worth more than a bare mention,” when 3 = B,; = 10 the evidence is
positive, when 10 < B,, = 100 it is strong, and when B,; > 100 it is
decisive. Probability itself is a meaningful scale and so these catego-
ries are not a calibration of the Bayes factor but rather a rough
descriptive statement about standards of evidence in scientific investi-
gation. I will return to the issue of interpretation in Section 4.3 and
suggest a slightly different scale for use in social research.

Evaluating the Bayes factor involves calculating the inte-
grated likelihood (6), which can be a high-dimensional and intracta-
ble integral. Various analytic and numerical approximations have
been proposed, and in Section 4 I will discuss the BIC approxima-
tion, which is both simple and accurate. The Bayes factor depends
on the prior and, in principle, this should be carefully specified and
sensitivity to it should be carefully assessed. However, as we will
see in Section 4.1, the BIC approximation corresponds rather
closely to a particular choice of prior that seems reasonable for
many practical purposes.

These and other aspects of Bayes factors are reviewed in detail
by Kass and Raftery (1995), who give many references. One point
they make is that the logarithm of the integrated likelihood may also
be viewed as a predictive score for the model (Kass and Raftery, 1995,
Section 3.2). This is of interest because it leads to an interpretation of
the Bayes factor that does not depend on viewing one of the models as
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“true.” In this view, the Bayes factor is designed to choose the model
that will, on average, give better out-of-sample predictions.

4. THE BIC APPROXIMATION

In this section, I will introduce the BIC (Bayesian Information Crite-
rion) approximation to the Bayes factor by deriving it heuristically,
giving explicit expressions for it in various model classes, and finally
discussing its interpretation and its relation to P-values.

4.1. Derivation

The key quantity underlying the Bayes factor is the integrated likeli-
hood for a model, given by equation (6). I will first derive a simple
approximation to this quantity, and then show how it leads to approxi-
mate Bayes factors and to the BIC criterion for assessing models.
This subsection is fairly technical. The key result is equation (20)
and, if you are not interested in the derivation of BIC, you can now
skip to that point and still be able to follow the rest of the chapter.

For the moment I will concentrate on approximating the inte-
grated likelihood for a single model, and for simplicity I will simplify
notation by not mentioning the model, so that equation (6) will be
rewritten

p(D) = J p(D|6)p(6)d6. €

For ease of exposition, I will consider the case where the data
D consist of n independent and identically distributed observations,
Yi» - - - » ¥, €ach of which may be a vector. The results apply much
more widely than this, however, and in essence are valid for any
regular statistical model. This includes many time-series models for
data that are not independent, and also models for data that are not
identically distributed. For example, it includes most common mod-
els for event-history data.

The derivation proceeds by considering a Taylor series expan-
sion of g(0) = log{p(D|0)p(0)} about O, the value of @ that maximizes
g(0), i.e. the posterior mode. The expansion is

2(0) = g(8) + (6 — 8)'g'(9) + (6 — 8)'g"(8)(6 - B)
+ o(|6 - 6[), (10)
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where the superscript ” denotes matrix transpose, g'(8) = (di(o?), RN

ag(o) )T is the vector of first partial derivatives of g(0), and g"(6) is the
Hessmn matrix of second partial derivatives of g(8) whose (i, j) ele-
ment is (,9(,,9 Now g'(8) = 0 because g(0) reaches a maximum at § and

so its first derivative is equal to zero at that point. Thus
g(0) ~ g(8) +2(6 — 8)g"( 8)(0 — ). (11)

The approximation in equation (11) is not sure to be good unless 8 is
close to . However, when n is large, the likelihood p(D|8) is concen-
trated about its maximum and declines fast as one moves away from
0, so that only values of @ close to @ will contribute much to the
integral (9) defining p(D). For a formalization of this argument see
Tierney and Kadane (1986).

It follows that

p(D) = [ exp[g(0)]d0 ) ) )
~ exp[g()] [ exp [2(0 — 8)"g"(9)(6 — 9)1d6, (12)

by equation (11). Recognizing the integrand in equation (12) as pro-
portional to a multivariate normal density gives

p(D) ~ exp[g(8)](27)*|A | 7%, (13)

where d is the number of parameters in the model and A = —g"(8).
The use of equation (13) is called the Laplace method for integrals.
Theerrorinequation (13)is O(n ") (Tierney and Kadane, 1986), andso

log p(D) = log p(D|8) + log p(8) + (d2)log(27) — V2 log |A| +
o(n™, (14)

where O(n ") represents any quantity such that nO(n ') — a constant
as n— o,

Now in large samples, @ =~ § where @ is the MLE, and A ~ ni,
where iis the expected Fisher information matrix for one observatlon
This is a (d X d) matrix whose (i, j) element is —E E“’%,{;gy; )| =@|, the
expectation being taken over values of y,;, with @ held fixed. Thus |A|
~ n’li|. These two approximations introduce an O(n~") error into
equation (14), which becomes

log p(D) = log p(D|6) + log p(6) + (d/2)log(2ﬂ-) (d/2)log n
—Yalog il + O(n™%). (15)
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Now the first term on the right-hand side of equation (15) is of order
O(n), the fourth term is of order O(log n), while the other four terms
are of order O(1) or less. Removing the terms of order O(1) or less
thus gives

0) — (d2)log n + O(1). (16)

log p(D) = log p(D

Equation (16) says that the log-integrated likelihood, log p(D), is
equal to the maximized log-likelihood, log p(D|#), minus a correc-
tion term.

Equation (16) is the approximation on which BIC is based,
and its O(1) error means that, in general, the error in it does not
vanish even with an infinite amount of data. This is not as bad as it
sounds, however, because the other terms on the right-hand side of
(16) tend to infinity as n does, and so will eventually dominate. Thus
the error in (16) will tend toward zero as a proportion of log p(D),
ensuring that the error will not affect the conclusion reached, given
enough data. Nevertheless, the O(1) error does suggest the approxi-
mation to be somewhat crude.

Empirical experience has found (16) to be more accurate in
practice than the O(1) error term would suggest (e.g., Raftery 1993b).
In fact, the error is of a much smaller order of magnitude for a particu-
lar, reasonable, choice of prior distribution. Suppose that the prior
p(8) is multivariate normal with mean § and variance matrixi~'. Thus,
roughly speaking, the prior distribution contains the same amount of
information as would, on average, a single observation. This seems to
be areasonable representation of the common situation where there is
a little, but not much, prior information. Then

log p(0) = —(d2)log(27) + V2 log |il, (17)
and substituting (17) into (15) gives
log p(D) = log p(D|6) — (d/2) log n + O(n™"). (18)

Thus for the particular prior mentioned, the error in the approxima-
tion (16) is O(n'l/z) rather than O(1), which is much smaller for
moderate to large sample sizes, and which does tend to zero as n
tends to infinity.

The approximation (18) can be used to approximate the Bayes
factor B,; = p(D|M,)/p(D|M,). This is most conveniently written on
the scale of twice the logarithm, as follows:
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2log By, = 2 (log p(D|6,, M,) — log p(D|6;, My)) — (d, — dy) log n +
o(n™"). (19)

If M, is nested within M,, equation (19) can be rewritten
2log By, = x5, — dfy, log n, (20)

where 3, is the standard likelihood ratio test (LRT) statistic for
testing M, against M,, and df,; = d, — d, is the number of degrees of
freedom associated with the test.

The Laplace method for integrals was introduced into statis-
tics by Tierney and Kadane (1986) and seems first to have been used
for Bayes factors by Raftery (1988). Equation (15) goes back to
Jeffreys (1961), while equation (16) is due to Schwarz (1978) and
equation (18) was pointed out by Kass and Wasserman (1992). For
other references, see Kass and Raftery (1995).

4.2. BIC for Specific Models

4.2.1. General Form

When several models are being considered, it is useful to compare
each of them in turn with a baseline model, usually either a null
model (M) with no independent variables, or a saturated model (M)
in which each data point is fit exactly.

When the baseline model is a saturated model, Mg, the LRT
statistic in equation (20) is often called the deviance. The value of
BIC for model M,, denoted by BIC,, is the approximation to 2 log By,
given by (20), where By, is the Bayes factor for model M, against
model M,. This is

BIC, = L; — df, logn, (21)

where L} = x3, is the deviance for model M, and df, is the corre-
sponding number of degrees of freedom. Then BICg, the BIC value
for the saturated model, is zero, and the saturated model is pre-
ferred to M, if BIC, > 0, in which case M, can be considered not to
fit the data well. When BIC, < 0, M, is preferred to the saturated
model, and the smaller that BIC, is (i.e., the more negative), the
better the fit of M,.
When comparing two models, M; and M,, we note that
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By, = p(D|M))/p(D|M,)
[P(D|Ms) ] /[p(DIMs) ]
p(DIMy) 'L p(DIM)
= Bg/Bg, and so
2log By, = 2log By, — 2log Bg;
~ BIC, — BIC;. (22)

Thus two models can be compared by taking the difference of their
BIC values, with the model having the smaller (i.e., the more nega-
tive) BIC value being preferred. I will discuss the interpretation of
the size of the difference in Section 4.3. Note that M; and M, do not
have to be nested for equation (22) to be applicable.

When the baseline model is the null model, M,,, with no inde-
pendent variables, then BIC, is replaced by BIC, the approximation
(20) to 2log B, where B, is the Bayes factor for the null model M,
against the model of interest M,. This is

BIC), = —x3, + p; log n, (23)

where x7, is the LRT statistic for testing M, against M, and p, is the
number of degrees of freedom associated with that test. In re-
gression-type models, p, will usually be the number of independent
variables in M,.

BICY, the BIC' value for the null model, is zero. Thus if BIC’,
is positive, the null model M, is preferred to M, indicating that M is
overparameterized, containing parameters (and hence probably vari-
ables) for which the data provide little support. In that case, a
submodel of M, (containing some but not all of the variables in M,)
may well fit better than either M, or M,. For examples of this, see
Section 7. If BIC), is negative, then M, is preferred to M, and the
smaller (i.e., the more negative) BIC', is, the more M, is supported
by the data. For comparing two models, BIC' differences can be
used in the same way as BIC differences, and equation (22) is still
valid if BIC is replaced by BIC'.

Which of BIC, or BIC, should be used? For any one model,
they will be numerically different, but for comparing any two given
models, M; and M, they are equivalent, in the sense that the BIC
difference is the same as the BIC’ difference, i.e.
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BIC, - BIC; = BIC) — BIC’. (24)

The two measures, BIC and BIC', differ only by a constant that is
the same for all models; this constant is equal to both BIC, and
~BIQ, which are in turn equal to one another. Thus

BIC, — BIC) = ¢ (25)

for all models M,, where ¢ = BIC,= —BIC.

In practice, which of BIC or BIC' is used will depend on
whether the software that estimates the models provides the devi-
ances or the LRT statistic against the null model. If the software
yields the deviance, then BIC will be used, and if instead it reports
the LRT statistic, then BIC’ will be used. If both the deviance and
the LRT statistic are available, either BIC or BIC’ can be used, or
both. Although equivalent for testing and model selection purposes,
they do each provide some different information. BIC, can be
viewed as a measure of overall model fit,® while BIC) provides an
assessment of whether M, is explaining enough of the variation in the
data to justify the number of parameters it uses.

There is one important ambiguity in equations (21) and
(23)—namely, the definition of n, the “sample size.” What this
should be is clear in some situations but not in others. As a general
rule, the definition of n should be the one that makes the approxi-
mation |A| = n%i| used in the derivation of (15) most accurate.
More precise suggestions for specific model classes will be given in
the following subsections.

4.2.2. Linear Regression and Analysis of Variance
For linear regression with normal errors, the most convenient form is
BIC’, and it can be shown that this has the simple form

BIC), = nlog(1 — R}) + p, log n, (26)

where Rj is the value of R* for model M, and p, is the number of
independent variables (not including the intercept).

Note that standard analysis of variance for designed experi-
ments can be recast in terms of linear regression by using sets of
dummy variables to represent the different factors and interactions,

This is true only in models for which goodness-of-fit statistics can be
used for this purpose, such as models for categorical data.
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and then equation (26) can be used in that context also. In particular,
simple problems like testing for a difference between two means can
be solved using (26) in this way.

The sample size n will usually be just the number of cases.
This will not be true, however, if responses with the same values of
the independent variables have been grouped into a single case with
the average response as dependent variable, and weighted regression
carried out, with weights proportional to the number of individuals
in the group. This often happens in the analysis of designed experi-
ments, when individuals are grouped into “cells.” The n should be
the actual number of individuals rather than the number of cases or
cells. When the data have been collected using a complex survey
design with resulting weights, it is not yet clear what n should be, and
this issue awaits further study. However, it seems reasonable that if
the model is based on an assumption of simple random sampling but
the sampling design is less efficient, then n should be reduced to
reflect the efficiency of the sampling design relative to simple ran-
dom sampling.

4.2.3. Logistic Regression

Some logistic regression software produces the deviance, some the
LRT statistic, and some both. Thus BIC and BIC' may both be used,
depending on the software, and equations (21) and (26) apply di-
rectly. The same is true for other binary response models, such as
those with the probit or complementary log-log link.

What should n be? When each individual is a separate case,
then »n should be simply the sample size. In logistic regression, how-
ever, responses with the same values of the independent variables
are often grouped together into a single case for which the dependent
variable is the number of positive responses, which has a binomial
distribution. In that situation, the number of cases is not the same as
the number of individuals. Then n should be the number of in-
dividuals—i.e., the sum of the binomial denominators, not the num-
ber of cases in the regression.

4.2.4. Log-Linear Modeling

Software that estimates log-linear models for contingency tables usu-
ally gives the deviance rather than the LRT statistic against a null
model. Thus it is most natural to use BIC rather than BIC'.
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What should n be? Once again, it is best to use the actual
number of individuals—i.e., the sum of the cell counts, not the num-
ber of cells (Raftery 1986a).

4.2.5. Event-History Analysis

Most event-history analysis software reports the LRT statistic against
the null model with no independent variables, and so BIC' is the
more convenient measure to use. For fully parametric event-history
models, the theory of Section 4.1 provides a direct justification for
the use of BIC'. However, event-history analysis is often based on
the Cox proportional hazards model, and there there is a complica-
tion: It is not fully parametric because the baseline hazard rate is
unspecified. The regression part is parametric, however, and this is a
case of a semiparametric model. In spite of this, BIC' may still be
validly used for the Cox model (Raftery, Madigan, and Volinsky
1995). The number of degrees of freedom, p,, is then just the number
of independent variables.

What should n be? Should it be the number of individuals, the
number of events, or the number of spells (including censored
spells)? It seems best to use the number of events rather than either
of the other two possibilities (Raftery, Madigan, and Volinsky 1995).

For discrete-time event-history analysis, the same choice has
been made (Xie 1994), while the total number of exposure time units
has also been used, for consistency with logistic regression (Raftery,
Lewis, Aghajanian and Kahn 1995; Raftery, Lewis and Aghajanian
1995). The latter choice is more conservative and seems safer in the
absence of a definitive result about which is more appropriate. More
research is needed on this matter, and I conjecture that the less
conservative choice of Xie (1994) will eventually be shown to be the
more appropriate one.

4.2.6. Structural Equation Models
In this subsection I will use the notation of Bollen (1989, table 2.2),
so that N is the number of individuals, p is the number of indicators
of the independent variables, g is the number of indicators of the
dependent variables, and v, is the number of independent parame-
ters fitted in model M,.

Software for estimating structural equation models, such as
LISREL or EQS, tends to give the deviance (i.e., the LRT statistic
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against the “saturated” model in which each covariance is fit ex-
actly), rather than the LRT statistic against a null model. Thus BIC
rather than BIC' is the more convenient measure and equation (21)
is the one to use. There df}, is the number of covariances minus the
number of independent parameters fitted—that is, df, = Y2(p + q)(p
+qg+1)— v,

When one is comparing two models, M, and M,,_,, where M, _,
is nested within M, and M, has one more parameter than M, _, then,
approximately, L;_, — L2 = £, where L; is the deviance for model M,
and 7 is the 7 test statistic for testing the additional parameter. Thus

BIC,_, — BIC, =~ # — log n. (27)

If this is positive, the larger model M, will be preferred.

When one is comparing M, with a bigger model, M, ,, within
which it is nested and which has one more parameter than M,, then,
approximately, L; — L2,, = W, the Lagrange multiplier test statistic
or modification index, and so

BIC, — BIC,,, ~ W — log n. (28)

Again, if this is positive, the larger model M, will be preferred.

Equations (27) and (28) are useful for model-building with
BIC in structural equation models, because most software for esti-
mating these models returns both ¢ statistics and modification indi-
ces. Thus by fitting a single model, one can compute approximate
BIC values for it, all the models that have one parameter less than it,
and all the models that have one parameter more than it. For an
example of a model search that exploits this fact, see Raftery
(1993a).

What should n be? I recommend using # = N, the number of
individuals. Raftery (1993a) used n = N(p + q), but the derivation of
equation (19) (which was not known when Raftery [1993a] was writ-
ten) suggests that n = N would be more accurate. Note, however,
that equation (16) is valid for both definitions of ».

4.3. Interpretation
In Section 3.2 I gave the rules of thumb of Jeffreys (1961) for inter-

preting Bayes factors and, hence, between-model differences in BIC
or BIC'. I find a slightly modified version more appropriate. I prefer
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TABLE 6
Grades of Evidence Corresponding to Values of the Bayes Factor for M,
Against M, the BIC Difference and the Posterior Probability of M,

BIC Difference Bayes Factor p(M,|D)(%) Evidence
0-2 1-3 50-75 Weak
2-6 3-20 75-95 Positive
6-10 20~-150 95-99 Strong
>10 >150 >99 Very strong

to define “strong” evidence as corresponding to posterior odds of
20:1 rather than 10:1 (by analogy with the intention behind the stan-
dard .05 significance level), and to use the term “very strong” rather
than “decisive” for the evidence implied by very high posterior odds.
Jeffreys put the boundary for this at 100:1, corresponding to a BIC
difference of 2 log 100 = 9.2, but I prefer to round this up to the
slightly more conservative value of 10, corresponding to posterior
odds of about 150:1. This yields the scheme shown in Table 6.

A conversion of ¢ statistics and their associated P-values to
approximate BIC differences can be made by noting that when df,, =
1 in equation (20), then, approximately in regular models, x3, = £,
where ¢ is the usual ¢ statistic for testing the significance of the pa-
rameter of M, that is set equal to zero in M,;. Then (20) becomes

2log B,, = £ — log n = BIC, — BIC,. (29)

(Note that the middle expression in equation [29] is only an approxi-
mation to the difference of BIC values—that is, an approximation
to an approximation.) It follows that ¢ values can be roughly trans-
lated into BIC values and hence into grades of evidence such as
those of Table 6. In particular, [ff > V'log n is required for there to
be even weak evidence for the additional parameter in M,, while |¢|
>V log n+6 corresponds to strong evidence on this scale.

Table 7 shows the minimum ¢ values required for various
grades of evidence and sample sizes. The sample sizes are chosen to
represent roughly the sample sizes that arise in various kinds of
sociological study. The first three sample sizes are in the range of
those that arise in aggregate studies and in quantitative mac-
rosociology: very roughly, there are about 30 industrialized coun-
tries, 50 U.S. states, and 100 U.S. SMSAs in a typical study. The last
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TABLE 7
Approximate Minimum ¢ Values Corresponding to Different Grades
of Evidence

Minimum BIC "

Evidence Difference 30 50 100 1,000 10,000 100,000

Weak 0 1.84 198 215 2.63 3.03 3.39
Positive 2 232 243 257 298 3.35 3.68
Strong 6 3.07 315 326 3.59 3.90 4.18
Very strong 10 3.66 3.73 3.82 4.11 4.38 4.64

three sample sizes are more typical of individual-level survey and
census data: There might be 1,000 cases in a small survey, 10,000 in a
big one, and 100,000 in a census subsample, a large event-history
database, or a cross-national collection of surveys. The minimum ¢
values in Table 7 are for the most part larger than 2, suggesting that
the common rule of viewing ¢ values greater than 2 as “significant”
overstates the evidence that they imply.

In the context of linear regression, equation (26) indicates that
the evidence for an additional independent variable can be measured
by

BIC,,, — BIC), = nlog{(1 — Ri_)/(1 — R)} + logn, (30)

where M, is nested within M, ,,, which contains one additional vari-
able. For there to be any evidence in favor of the new variable, the
right-hand side of (30) should be negative. Thus for a BIC' change of
more than VBIC’, we would need to have

RED, ;,; > 1 — exp[—(VBIC' + log n)/n], (31)

where RED, ,,; = 1 — (1 = Ri,,)/(1 — R;) is the proportional reduc-
tion in residual sum of squares due to the additional variable. When
R;issmall, then RED, ;,, =~ R:., — R, whichis the increase in R* due
to the additional variable, and so equation (31) becomes

Increase in R* > 1 — exp[ — (VBIC’ + log n)/n]. (32)

Note that equation (32) is valid only when R} is small and should be a
reasonable approximation for, say, R? < .30. The values of (31) or
(32) corresponding to various grades of evidence for different sample
sizes are shown in Table 8.
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TABLE 8
Minimum Percent Reduction in the Residual Sum of Squares Required for Dif-
ferent Grades of Evidence in Favor of One Additional Variable in Linear Re-
gression. When R is small, this is roughly equal to the required increase in R*.

Minimum BIC "

Evidence Difference 30 50 100 1,000 10,000 100,000

Weak 0 107 75 45 07 .09 .012

Positive 2 165 112 64 09 11 .014

Strong 6 269 18.0 10.1 1.3 15 .018

Very Strong 10 36.0 243 136 1.7 .19 .022
TABLE 9

Approximate Two-sided P-Values Corresponding to Different Grades of
Evidence in Favor of One Additional Parameter

Minimum
BIC "

Evidence Difference 30 50 100 1,000 10,000 100,000
Weak 0 .076  .053 .032 .009 .002 .0007
Positive 2 .028 .019 .010 .003 .0008 .0002
Strong 6 .005 .003 .001 .0003 .0001 .00003
Very strong 10 .001 .0005 .0001 .00004 .00001 .000004

4.4. BIC and P-Values

The P-values corresponding to the ¢ statistics in Table 7 are shown in
Table 9. These are rather different from the commonly used .05 and
.01 cutoffs, and in most cases are smaller. For sample sizes in the 30—
50 range, they are in rough agreement with conventional rules, but
for larger sample sizes, much smaller P-values are required to imply
that the data provide evidence for the effect of interest. Conven-
tional advice has been that the significance level should decline as
sample size increases, but how this should be done has not been
spelled out. Table 9 provides precise guidelines for doing so, and
reveals that, for large samples of the sizes that sociologists routinely
work with, significance levels need to be lowered more drastically
than one would perhaps have expected.

It is important to note that Table 9 is valid only for tests
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involving one additional parameter (i.e., one degree of freedom).
Equivalent tables could be constructed for tests with more than one
degree of freedom; typically the deviation from conventional values
would be even greater than where there is one degree of freedom,
especially for the larger sample sizes.

In fact, the use of Bayes factors can be viewed as a precise way
of implementing the advice of Neyman and Pearson (1933) that
power and significance be balanced when setting the significance
level, in the following sense. Suppose that half the time the null
hypothesis, M, is true and that half the time it is false, in which case
the alternative hypothesis, M,, is true. Then the overall error rate
(total of Type I and Type II errors) is minimized when the testing rule
is to reject the null hypothesis whenever the Bayes factor favors the
alternative—that is, whenever B,; > 1, or, approximately equiva-
lently, when BIC, < BIC, or BIC, < BIC]. This was shown by
Jeffreys (1961, pp. 396-97), as was pointed out by Kass (1991) using
more modern terminology.

It is clear from Table 9 that naive interpretations of P-values
such as “P = .001 means that the null hypothesis is false with proba-
bility .999” are wrong. To be fair, arguments for P-values do not
claim that such an interpretation is valid, but it may be a surprise that
with a large enough sample (n = 100,000) P = .001 actually corre-
sponds to evidence for the null hypothesis.

There is no real conflict between Bayes factors and signifi-
cance tests: Bayes factors can be viewed as a way of setting the
significance level in the test. With large samples, the appropriate
level can be well below conventional levels such as .05 or .01, as
Table 9 shows. However, there is a conflict between Bayes factors
and significance testing at predetermined levels such as .05 or .01.
There seem to be two reasons for this conflict. The first is the nature
of the question posed by the P-value-based test:

What is wrong with the likelihood ratio test?

The aim of much social research is to describe
the main features of selected aspects of social reality
and is necessarily to some extent approximate. The
LRT, in common with other significance tests, is de-
signed to detect any discrepancies between model and
reality. Such discrepancies do exist, by definition, al-
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though if the model is satisfactory, they should be
small. With a large enough sample, the LRT will find
them and reject even a good model.

In the contingency table case, the LRT tests a
model M, say, against the saturated model M,. As-
sume for the moment that no other models are being
considered. Rejection of M, then implies acceptance
of M,, which says that each cell is a special case. This
does constitute a statement about the underlying so-
cial reality and may, indeed, itself be a model of
interest. Rejection of M, does not imply that M, pro-
vides a better description. The point is that we
should be comparing the models, not just looking for
possibly minor discrepancies between one of them
and the data.

The question to which we really want an an-
swer can perhaps often best be expressed as follows:
which model better describes the main features of
social reality as reflected in the data? A closely re-
lated and more precise question is: given the data,
which of M, and M, is more likely to be the true
model?

The latter question can be answered by calcu-
lating the posterior odds for M|, against M, (Raftery
1986b).

The second reason relates to the nature of the conditioning in
the two procedures. A standard test rejects H, if equation (1)
holds—that is, if the probability under H, of observing a value of the
test statistic as extreme or more so is small. Thus the standard test
conditions on the event {T = #(D)}—that is, the event that the test
statistic was as extreme as the value observed, or more so. However,
what actually happened was the event {T = #(D)}, which is less sur-
prising under H,, (because less extreme), and hence casts less doubt
on H,. Bayesian model selection conditions on what actually hap-
pened—namely, {T = #(D)}, suggesting the data to be less surprising
under H,, than does the standard test. Thus the Bayesian method
tends to be less likely to reject a null hypothesis. Jeffreys (1980)
wrote:
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I have always considered the arguments for the use
of P absurd. They amount to saying that a hypothesis
that may or may not be true is rejected because a
greater departure from the trial value was improba-
ble; that is, that it has not predicted something that
has not happened.

Berger and Sellke (1987) gave the following simple illustration
of the distinction:”

Suppose that X is measured by a weighing scale that
occasionally “sticks” (to the accompaniment of a flash-
ing light). When the scale sticks at 100 (recognizable
from the flashing light) one knows only that the true
value x was greater than 100. If large X casts doubt on
H,, occurrence of a “stick” at 100 should certainly be
greater evidence that H| is false than should a true
reading of x = 100. Thus there should be no surprise
that the P-value might cause a substantial overevalua-
tion of the evidence against H,,.

In this situation, the P-value will be the same whether or not the light
is flashing, which seems counterintuitive: it is clear that there is more
evidence against H, when the light is flashing than when it is not. In a
sense, P-value-based tests always proceed as if the light were flash-
ing, and that is one reason why they overestimate the evidence
against H; in the more usual situation where the data are fully ob-
served (or, equivalently, where the light is not flashing). By contrast,
the Bayes factor for H, against H, will be greater when the light is
flashing than when it is not, in agreement with intuition.

The arguments are well summarized by Berger and Sellke
(1987) and Berger and Delampady (1987) and the discussants of
these papers, which I recommend to the reader.

5. MODEL UNCERTAINTY AND OCCAM’S WINDOW

I now turn to the situation where there are many models, {M,, . . .,
M}, and no longer just two. Suppose that A is a quantity of interest

"The quotation has been slightly paraphrased.
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such as a parameter of main interest or a future observation to be
predicted. Then Bayesian inference about A is based on its posterior
distribution, which is

p(AID) = 2 p(AID.M)p(M,D), (33)

by the law of total probability (Leamer 1978, p. 117). Thus the full
posterior distribution of A is a weighted average of its posterior
distributions under each of the models, where the weights are the
posterior model probabilities, p(M,|D). Equation (33) provides infer-
ence about A that takes full account of model uncertainty.

In equation (33) the posterior model probabilities p(M,|D) are
obtained by Bayes’ theorem, as follows:

p(DIM,)p(M,)
2?=1P(D|M6)P(Me) ’

p(M{D) = (34)
which is a direct generalization of equation (5) from two models to K
of them. Often all the models will be on an equal footing a priori, so
that p(M,) = ... = p(Mg) = 1/K. By the results in Section 4.1,
approximately, p(D|M,) « exp(—¥2BIC,) or exp(—¥:BIC’,). Thus

K
p(M,|D)=exp(—V:BIC,)/ > exp(—¥:BIC,). (35)
=1

Equation (35) still holds if BIC is replaced by BIC'.

I will now consider in more detail the situation where the
quantity of interest is one of the regression parameters, 3;, say.
Typically some of the models specify 8, = 0, and so the posterior
probability that B, = 0, Pr[B, = 0|D], will be nonzero. Of particular
interest is Pr[B, # 0|D], the posterior probability that B, is in the
model, which is just

Pr[, # 0|D] = > p(M,|D), (36)
4
where A, ={M,: k=1, ..., K;B, # 0}—that is, the set of models
that include B;.
The probability that B, is in the model, Pr[B;, # 0|D], can be
converted to the odds scale using the relationship
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Odds = Probability / (1 — probability),

and interpreted using rules of thumb such as those in Table 6. The
breakpoints for weak, positive, strong, and very strong evidence are
then about .50, .75, .95 and .99 on the probability scale.

Of interest also is the size of the effect, given that it is non-
zero. The posterior distribution of this is

p(By|D, B, # 0) = Ep(/s] |D, M)p'(M|D),
where p'(M,|D) —p (M{D) I Pr [B, # 0|D].

This can be summarized by its posterior mean and standard devia-
tion, which may be viewed as, respectively, a Bayesian point estima-
tor and a Bayesian analogue of the standard error. Convenient ap-
proximations to these are

E[B)|D,B, #0] = E Bl (k)p'(M,|D), (38)

(37)

A

SDIBID.£, 0] = 3 sei() +A,00 1P (M4D)ELB Dy #0F,

where $3,(k) and se,(k) are respectively the MLE and standard error
of B, under model M, (Leamer 1978, p. 118; Raftery 1993a).

The main practical problem with putting this scheme into prac-
tice is that the number of models, K, may be so large that direct
evaluation of the sums over all models is not feasible. For instance,
in the crime example of Section 2.4, K = 2'° = 32,768, and so a literal
implementation of the scheme would involve fitting all 32,768 regres-
sion models.

To get around this, Madigan and Raftery (1994) argued that
one should exclude from the sum in (33) (a) models that are much less
likely than the most likely model—say 20 times less likely, correspond-
ing to a BIC (or BIC') difference of 6; and (optionally) (b) models
containing effects for which there is no evidence—that is, models that
have more likely submodels nested within them. The models that are
left are said to belong to Occam’s window, a generalization of the
famous Occam’s razor, or principle of parsimony in scientific explana-
tion. When both (a) and (b) are used, Occam’s window is said to be
strict, and when only (a) is used it is said to be symmetric.

Both variants of Occam’s window reduce the number of models
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enormously, while encompassing the essential model uncertainty pres-
ent. In the crime example, there are K = 32,768 models to start with,
while the symmetric Occam’s window has 51, and the strict Occam’s
window has only 14. This is quite typical of experience to date.

A series of studies, summarized by Raftery, Madigan, and
Volinsky (1995), has shown that in a range of model classes and with
a variety of datasets, taking account of model uncertainty yields better
out-of-sample predictive performance than any one model that might
reasonably have been selected. This is true whether one averages
across all models, or uses Occam’s window in either its strict or
symmetric forms. But which of these three model averaging methods
is the best? The studies to date suggest that the symmetric Occam’s
window has predictive performance as good as that of averaging over
all models, while the strict Occam’s window does slightly less well
predictively, but is more useful for reporting model uncertainty, be-
cause it involves far fewer models, and these are the most important
ones. In Section 6 we report only results from the strict Occam’s
window.

How can we find the models in Occam’s window when the
initial set of models is huge? It is not feasible to proceed directly by
checking each model to see whether or not it is excluded, because the
number of models is too large. For the special case of linear regres-
sion, one can use the leaps and bounds algorithm of Furnival and
Wilson (1974) to select a reduced set of good models, and then apply
rules (a) and (b) directly to this reduced set. This is the basis for the
BICREG software described in the appendix to this chapter. This
has been adapted for logistic regression in the BIC.LOGIT software,
which is also described in the appendix. A more general tree-based
algorithm is described by Madigan and Raftery (1994); this is applica-
ble to a wide range of model classes.

The Bayesian approach to model uncertainty was introduced
by Leamer (1978). For reviews of the work since then, see Draper
(1995) and Kass and Raftery (1995).

6. DIFFICULTIES RESOLVED

I now return to the practical difficulties with P-value-based tests
discussed in Section 2 and describe how they are dealt with by Bayes
factors, BIC, and the Bayesian approach to model uncertainty.
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6.1. Large Samples

The BIC values for the models proposed for the large cross-national
social mobility dataset of Section 2.2 are shown in Table 2. The
Lipset-Zetterberg hypothesis (model 2) is indeed overwhelmingly
rejected given its very large positive BIC value.® However, the quasi-
symmetry model (model 3) is strongly preferred by BIC to the satu-
rated model (model 4).

This agrees with the intuition of Grusky and Hauser (1984)
and with the decision they made, and yet it is in dramatic conflict
with the result based on P-values. Thus in this case BIC gives a result
that is in agreement with the scientific judgment of knowledgeable
investigators, while P-values give a result that is directly opposed to
it. It is interesting to note that when Grusky and Hauser decided to
ignore the P-value, because they felt that it clearly did not make
scientific sense, they did not know about BIC and so did not have
any formal statistical justification for their decision. This was the
original example of BIC for log-linear models (Raftery 1986b). The
fifth model in Table 2 is discussed below in Section 7.

6.2. Many Candidate Independent Variables

It was shown in Section 2.3 that when there are many candidate
independent variables, statistical conclusions based on the selected
model can be very misleading. They tend to identify seemingly
strong relationships when, in fact, none exist. This was most strik-
ingly illustrated by Freedman’s (1983) simulation of 50 independent
variables with 100 cases all consisting of pure noise unrelated to the
dependent variable. In my replication of this, stepwise regression led
to a highly significant and apparently satisfactory model with four
independent variables (Table 3).

When the strict Occam’s window was applied to these simu-
lated data, it found five almost equiprobable models including the
null model itself. When Pr[B; # 0|D] was calculated for each variable,
it was found to be zero for 44 of the 50 variables, below V2 for a
further four, while for the remaining two it was 0.70 and 0.73. Even

8The same result holds when only the nine industrialized countries are
included.
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for these last two the evidence for an effect is weak on the scale of
Table 6, with posterior odds of 2.3 and 2.7. Thus the conclusion from
Occam’s window would be that there is at most weak evidence for
the inclusion of any variable, and that the null model itself is a
plausible candidate. Unlike the conclusions that follow from screen-
ing methods and stepwise regression, this is not a misleading conclu-
sion. Thus Occam’s window seems to resolve the dilemma posed by
Freedman’s result.

It might be objected that Occam’s window (and methods
based on Bayes factors and BIC more generally) tends to favor parsi-
mony to such an extent that it might find no signal even when there
was one. To check whether this was so, I did two further small
simulation experiments, using the same X matrix as that reported in
Section 2.3. In both experiments, instead of Y being noise, Y was
allowed to depend only on X;: Y was simulated as Y = BX; + e,
where € ~ N(0, 1 — %), so that the “true” R*is B°.

In the first experiment, 8 = .45 so that R* = .20. There
Occam’s window contained just one model: the correct one with X,
only. Thus the correct conclusion was drawn by Occam’s window in
this case without any ambiguity or uncertainty. By contrast, the
screening method described in Section 2.3 (screening out clearly
nonsignificant variables from the full equation) yielded a model with
10 variables of which three were significant at the .05 level, and a P-
value of 3 X 107°. Stepwise regression yielded a model with two
variables (including X, ), both of them significant at the .05 level.

In the second experiment, 8 = .32, so that the true R*>was only
.10. Occam’s window yielded two models with almost equal probabili-
ties, one containing only X; and the other consisting of (X;, X;).
Thus Pr[B, # 0|D] = 1 and Pr[B,, # 0|D] = .52, while Pr[B; # 0|D] =
0 for all other 48 coefficients. Thus Occam’s window would lead us to
conclude that X, certainly has an effect, that there is some very weak
evidence for X, having an effect, while there is no evidence that any
of the other 48 variables has an effect. This is strikingly faithful to the
reality, especially given the low “true” R? (.10), the relatively small
sample size (100), and the large number of irrelevant variables (49).

By contrast, the screening method gave a model with 11 vari-
ables of which four were significant at the .05 level, while stepwise
regression gave a model with two variables (including X,) both signifi-
cant at the .05 level. Once again, standard variable selection strate-
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gies misleadingly detected evidence for effects of variables that were
in fact not at all associated with the dependent variable.

6.3. Model Uncertainty

I now return to the crime example of Section 2.4, in which there was
clear model uncertainty. Different variable selection methods gave
quite different models. Also, in terms of the main questions of inter-
est, different models selected gave very different estimates of 3,,, the
effect of probability of imprisonment, and also yielded different con-
clusions about whether X5, the average time spent in state prisons,
has an effect.

The Occam’s window analysis of the crime data is shown in
Table 10. There are 14 models, between them giving a picture of the
model uncertainty in the data. Ehrlich’s models do not fit well
enough to be included in Occam’s window, and they have BIC' val-
ues that are far worse than the best model, by 25 and 30 points
respectively. The theory on which Ehrlich’s models are based would
have to be very solid indeed to justify their being used as the basis for
conclusions.

For X,,, the probability of imprisonment, the probability of an
effect is high at 98 percent and the point estimate taking into account
model uncertainty is —0.24. Interestingly, this is about halfway be-
tween the value from stepwise regression (—0.19) and those from the
full model and the models chosen by C, and adjusted R? (—0.30) in
Table 5. The posterior standard deviation of 8, is 0.10, while for the
stepwise regression model the standard error was 0.07; the difference
is due to model uncertainty. The one-model standard error underesti-
mates uncertainty, because it ignores the component due to model
uncertainty.

For X, the average time spent in state prisons, the overall
posterior probability that it has an effect is 0.35. Thus the data pro-
vide no evidence for this variable to have an effect, but they do not
exclude this possibility either.

As for the other variables, there is very strong evidence that
education and income inequality are associated with higher crime
rates (each with “crime elasticities” greater than 1), positive but not
strong evidence for effects of the proportions of young males and of
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nonwhites, and weak evidence for an effect of unemployment among
males aged 35 to 39.

The case of police expenditures is interesting. This has been
measured in two successive years, and the measures are very highly
correlated (r = .993). The data show clearly that the 1960 crime rate
is associated with police expenditures, and that only one of the two
measures (X, and Xj) is needed, but they do not say for sure which
measure should be used. Each model in Occam’s window contains
one measure or the other, but not both. And we have Pr[8, # 0|D] +
Pr[Bs # 0|D] = 1, so that the data provide very strong evidence for an
association with police expenditures.

The coefficient for police expenditures is positive, which may
be contrary to expectations. It does indicate that increased police
expenditures are not associated with lower crime rates, and hence
that police expenditure is not a confounding variable for inference
about the effect of X;, on Y—for example, at least not in the way one
might expect.® A simple way of dealing with this is to exclude from
Occam’s window models with any coefficient in the wrong direction;
here this would amount to excluding X, and X5 and redoing the
analysis.10 Note that if the purpose of the modeling exercise is solely
to predict crime rates (for example, in the three states not included in
the data), rather than to make inference about causal mechanisms,
then models with X, and Xy should be included, even if the coeffi-
cients have the “wrong” sign.

There is no evidence for an effect of any of the other variables,
and in the case of five of them (those for which Pr[B; #0|D] =0),
there is evidence against an effect.

A more exact Bayesian analysis of these data that does not
rely on the BIC' approximation was done by Raftery, Madigan, and
Hoeting (1993).

7. MODEL-BUILDING STRATEGY

One apparent difficulty with the approach outlined here is that when
a parsimonious but ill-fitting model M, is compared with a highly

90ne possible explanation is that increases in the crime rate lead to
increased police expenditure. Time-series data would be needed to address the
issue properly.

10This is roughly equivalent to the more sophisticated Bayesian approach
of using a prior distribution for B, and B that excludes positive values.
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over-parameterized model M,, BIC often prefers the more parsimoni-
ous model, even though it may be clearly sociologically unaccept-
able. When forced to choose between two unsatisfactory models,
BIC tends to choose the one with fewer parameters. This has led
some researchers to worry that BIC is biased in favor of parsimony
over fit.

Formally speaking, this worry is unfounded, given that one
ever considers only M, and M,. Bayes factors are designed to choose
the model that provides better out-of-sample predictions on average
(Kass and Raftery 1995, sect. 3.2), and their use as a significance test
minimizes the total error rate. In practice, however, when this occurs
it can be an indication that neither M, nor M, is a very good model, in
that M, may be missing an important aspect of the underlying phe-
nomenon, while M, may be using too many parameters to represent
it, for several of which there is no evidence.

A reasonable course of action when this happens is to search
for a further model, M, say, which achieves most of the improvement
in deviance or maximized likelihood in going from M, to M,, but uses
fewer parameters to do it. One way of doing this is to ask why M,
should fit better than M;, and then build a model that has one pa-
rameter (or so) for each reason or mechanism given. Another, com-
plementary, approach is to inspect the residuals from M, to see if
there is a pattern or if they can be predicted by other variables not in
M,. The resulting model, M;, or some variant of it, may well have a
better BIC value than either M, or M,. Thus BIC can be used to
guide an iterative model-building process.

This is well illustrated by the cross-national social mobility
dataset of Sections 2.2 and 6.1. Grusky and Hauser (1984) noted that
the quasi-symmetry model was preferable to the saturated model
which asserts that the mobility regime in each country is different.
They nevertheless searched for systematic patterns in cross-national
differences between mobility regimes, explained by characteristics of
the countries studied that might be expected to affect social mobility.

This led to model S of Table 2 above, in which the country-
specific mobility parameters are allowed to vary systematically as
functions of industrialization, educational participation, social de-
mocracy and inequality, with a dummy variable for Hungary. By a
conventional P-value-based significance test, this model would be
strongly rejected in favor of the quasi-symmetry model (and the
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saturated model also), but Grusky and Hauser (1984) used it and
claimed that its good fit provides evidence of systematic cross-
national variation in mobility parameters. Once again, their intu-
itively based support of this model was (retrospectively) validated by
BIC, which supports this model over the quasi-symmetry model; see
Table 2.11

A second illustration, also from the area of social mobility, is
provided by the model selection process in Hout (1988), part of
which is shown in Table 11. Hout’s article is about gender differences
and changes over time in social mobility in the United States over the
period 1972-198S. His starting point was the four-way 2 X 3 X 17 X
17 cross-classification of gender (S) X period (P) X father’s occupa-
tion (O) X current occupation (D), and he used log-linear models.

Model 1 in Table 11 can be viewed as a kind of baseline model,
it does not contain the [OD] interaction and so would not be socio-
logically acceptable. Model 2 does include the [OD] association but
uses no fewer than 16 X 16 = 256 parameters to represent it. The
result is a decrease in deviance that is substantial but not enough to
justify the large number of parameters used to achieve it, according
to BIC.

The surprising fact that BIC prefers model 1 to model 2 in
Table 11 led Hout to ask how the [OD] association in model 2 (which
was responsible for most of the 1883-point decrease in deviance)
could be more parsimoniously and interpretably represented. The
answer was that the occupations of fathers and sons are associated
because they have similar statuses, levels of on-the-job autonomy,
and job-specific training. Using these ideas, the [OD] interaction can
be represented using far fewer than 256 parameters, each of which
has a direct interpretation. This is achieved using Hout’s own (1984)
status-autonomy-training (SAT) model. The result was model 3 in
Table 11, which parsimoniously represents the full four-way [SPOD)]
interaction and has a much better BIC value than either model 1 or
model 2.

1T have not discussed the possible presence of overdispersion in these
data. Given the sample design, it is hard to see what the source of substantial
overdispersion would be. In any event, if overdispersion were explicitly taken
into account using standard methods (McCullagh and Nelder 1989), the devi-
ances would be deflated and the evidence for the more parsimonious models

would be stronger. Among the models considered here, the choices made would
be unaffected.
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TABLE 11
Fit of Models for the Four-Way Table of U.S. Mobility 1972-1985 (n = 9,227).
Model Marginals Fitted Deviance d.f. BIC
1 Table 4, model 3 [SPO][SD] 2653 1066 —7079
2 Table 4, model 10 [SPO][SPD][OD] 770 781 —6360
3 Table 5, SAT model [SP(SAT)] 1167 990 — 7872

Note: O = origin occupation (17 categories); D = destination occupation (17
categories); S = gender; P = period (3 categories); (SAT) = [OD] interaction parameter-
ized using Hout’s (1984) SAT model.

Source: From Hout (1988).

Thus Hout’s (1988) iterative model search guided by BIC led
to a model that fits better than others and is parsimonious, with each
parameter being substantively interpretable. The parameter esti-
mates (Table 5 of Hout [1988]) showed clearly how the associations
between origins and destinations changed between 1972 and 1985.
This clarity would have been harder to achieve with other, over-
parameterized, models considered.

8. DISCUSSION

In this chapter I have described the Bayesian approach to hypothesis
testing, model selection, and accounting for model uncertainty.
Some of the main points I have tried to argue are the following:

* Bayes factors provide a better assessment of the evidence for a
hypothesis than P-values, particularly with large samples.

* Bayes factors allow the direct comparison of nonnested models, in
a simple way.

* Bayes factors can quantify the evidence for a null hypothesis of
interest (such as a convergence hypothesis or a theory about soci-
etal norms). They can distinguish between the situation where a
null hypothesis is not rejected because there is not enough data,
and that where the data provide evidence for the null hypothesis.

* BIC (or BIC') provides a simple and accurate approximation to
Bayes factors.

* When there are many candidate independent variables, standard
model selection procedures are misleading and tend to find strong
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evidence for effects that do not exist. By conditioning on a single
model, they also ignore model uncertainty and so understate uncer-
tainty about quantities of interest.

* Bayesian model averaging enables one to take into account model
uncertainty and to avoid the difficulties with standard model selec-
tion procedures.

* The Occam’s window algorithm is a manageable way to implement
Bayesian model averaging, even with many models, and allows
effective communication of model uncertainty.

* BIC can be used to guide an iterative model selection process.

* The methods described here can be implemented using only the
output from standard statistical model-fitting software.

* Some software to implement Bayesian model averaging automati-
cally is available.

I know of no non-Bayesian way of dealing with the model
uncertainty problem. One proposal is to bootstrap the entire model-
building process, including model selection. However, there is no
theoretical justification for this, and Freedman, Navidi, and Peters
(1988) have shown that it does not give satisfactory results. The same
is true of the jackknife.

Bayesian model selection does not remove the need to check
whether the models chosen fit the data. Even if many models are
considered initially, they may a/l be bad! Thus diagnostic checking,
residual analysis, graphical displays, and so on, all remain essential.

I have emphasized the difficulties with P-value-based tests in
large samples, but there are difficulties also in small samples, such as
arise especially in macrosociology. There, tests at a .05 level often
fail to reveal any effects, which has been a source of frustration for
those doing comparative and historical research (e.g., see Ragin
1987). The use of BIC corresponds to a particular sample-size-
dependent choice of significance level and, as Table 9 shows, for
samples sizes below about 50, that level is greater than .05. Thus with
small samples BIC is actually less stringent than significance tests at a
.05 level, and so BIC may provide a more satisfactory basis for the
use of statistical models in comparative and historical research, as
well as other areas with small samples.

BIC was introduced as a large-sample approximation to the



BAYESIAN MODEL SELECTION IN SOCIAL RESEARCH 157

Bayes factor, and one may ask how large the sample has to be for it
to be used.!? That question remains to be answered, but in empirical
investigations Raftery (1993b) found BIC to be quite accurate in
examples with as few as about 40 observations. Small and unreported
numerical experiments suggest it to be surprisingly accurate even for
much smaller samples than that, but more research is needed on this
issue. For generalized linear models, the much more accurate ap-
proximation of Raftery (1993b) can be used with small samples; this
is implemented in the GLIB software described in the appendix to
this chapter.

I have focused on the choice of independent variables in re-
gression and related models in this chapter. However, model selec-
tion is much broader than this and also includes such modeling deci-
sions as the coding of variables, the choice of functional forms and
variable transformations, error distributions, and whether or not to
remove outliers. The general framework of Bayesian model selection

“can be applied to these problems also. For a practical implementa-
tion of Bayesian model selection in linear regression to include the
choice of independent variables, variable transformations and outlier
removal, see Hoeting (1994).

What is the role of theory in all of this? Theory is essential and
should be used to the greatest possible extent to define the model to
be used. Indeed, the ideal situation is one in which there is no model
uncertainty whatever. This ideal is sometimes approached, especially
in the study of topics on which there has already been a great deal of
research. Unfortunately, however, theory is often weak and vague,
and does not fully specify which control variables should be included,
which functional forms should be used, what the distribution of the
error term is, and so on. This is often particularly the case when
there has not been much previous research on the phenomenon un-
der study. Statistical methods for model selection and accounting for
model uncertainty should be used only to address issues left unre-
solved by theory. Bayesian model selection is not an all-purpose
panacea: strong theory, clear conceptualization and careful measure-
ment remain vital for successful social research.

2Bayesian model selection itself in its exact form places no restrictions
on sample size, and can be used validly with even a single observation (although
in that case it is unlikely to reveal much evidence for or against any model!).
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APPENDIX: SOFTWARE

The BIC or BIC' approximation can be readily calculated using the
output from most standard statistical model-fitting software. All that
is needed is that they return either the deviance or the LRT statistic
against a null model, along with the number of parameters or the
degrees of freedom.

Finding the models in Occam’s window and averaging across
them to account for model uncertainty can also be done using only
the output from standard software, but it is much more time-
consuming. I will now describe three pieces of software that help to
make it more automatic.

A.1. BICREG: Bayesian Model Selection for Linear Regression

BICREG is an S-Plus function which can be obtained free of charge
by sending the E-mail message “send bicreg from S” to the Internet
address statlib@stat.cmu.edu. Tt implements the Occam’s window
algorithm for linear regression using the BIC' approximation of equa-
tion (26).

For a given dependent variable and set of candidate indepen-
dent variables, the software finds the models in Occam’s window and
their posterior probabilities, and for each independent variable it
finds Pr[B; # 0|D] and the posterior mean and standard deviation. It
was used to carry out the analysis in Table 10.

It uses the leaps and bounds algorithm of Furnival and Wilson
(1974) to identify a reduced set of good models. When there are
more than 30 variables, it first uses backward elimination to reduce
the initial set of variables to 30.

A.2. BIC.LOGIT: Bayesian Model Selection for Logistic Regression

BIC.LOGIT is another S-Plus function that can be obtained free of
charge by sending the E-mail message “send bic.logit from S” to
statlib@stat.cmu.edu. It is an adaptation of BICREG to the logistic
regression setting and gives the same outputs.

It exploits the fact that at the MLE, logistic regression is
approximately a weighted least squares problem with an adjusted
dependent variable (McCullagh and Nelder 1989). To reduce the set
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of models to a manageable number, it converts the logistic re-
gression problem to the equivalent weighted least squares problem
and applies a liberal version of BICREG. It then calculates BIC
exactly for the remaining models, and finds those that lie in
Occam’s window.

A.3. GLIB: Generalized Linear Bayesian Modeling

GLIB is another S-Plus function that can be obtained free of charge
by sending the message “send glib from S” to statlib@stat.cmu.edu.
It does Bayesian model selection and accounting for model uncer-
tainty for generalized linear models, notably logistic regression and
log-linear models.

It differs from BICREG in two main respects, in addition to
the class of models it deals with. It does not use the BIC approxima-
tion but instead carries out a more exact Bayesian analysis using a
reference set of prior distributions (Raftery 1993b). Results are given
for a range of priors. It does not yet implement Occam’s window or
any model search algorithm but requires the user to specify all the
models to be considered. An epidemiological application was re-
ported in detail by Raftery and Richardson (1995).
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