Automatic test anti-patterns

WWW.querity.cz

Agenda

» Motivation

» What is automatic test
» Anti-patterns catalog
» Basic mistakes

» Best practices

> Summary
» Questions

Motivation

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.
~Martin Fowler

» Detect REAL bugs early

» Avoid boring regression tests

» Better design, api documentation
» Code quality

Agenda

» Motivation

» What is automatic test
» Anti-patterns catalog
» Basic mistakes

» Best practices

» Summary
» Questions

What is automatic test

» No definition in wiki ;-(
..... example in eclipse

Agenda

» Motivation

» What is automatic test
» Anti-patterns catalog
» Basic mistakes

» Best practices

» Summary
» Questions

(;:IIEI'il]J
Anti-patterns catalog

The Liar, Excessive Setup, The Giant,
The Mockery, The Inspector, Generous
Leftovers, The Local Hero, The Nitpicker,
The Secret Catcher, The Dodger,

The Loudmouth, The Greedy Catcher
The Sequencer, Hidden Dependency

The Enumerator, The Stranger,

The Operating System Evangelist,
Success Against All Odds, The Free Ride
The One, The Peeping Tom

The Slow Poke

C ierity

Anti-patterns catalog (2)
http://blog.james-carr.org/2006/11/03/tdd-
anti-patterins/

http://stackoverflow.com/questions/33368
2/tdd-anti-patterns-catalogue

Agenda

» Motivation

» What is automatic test
» Anti-patterns catalog
» Basic mistakes

» Best practices

» Summary
» Questions

C ierity

Basic mistakes

» No tests

» Manual (missing) Assertions

» Redundant Assertions

» Using the Wrong Assert

» Only Easy/Happy Path Tests

» Complex Tests

» External Dependencies

» Catching Unexpected Exceptions
» Mixing Production and Test Code

(:IIEF“]J

No tests

» Still common in many companies
> “It Is to expensive to write tests.”
> “We will write tests later”. (never)
» The Liar, Success Against All Odds

C ierity

No tests

Il TODO: This tests need to be activated when nightly db-reset is done!

@Ignore
@Test
public void testXXX() {

}

@Test
public void testYYY() {
Il TODO implement me

}

Manual (missing) Assertions

» Sysout instead of assert
» Why not just use a debugger?
» The Secret Catcher

"Debugging is twice as hard as writing the code

In the first place.

Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it."
Brian W. Kernighan

Manual (missing) Assertions

public void testCalculation() {
deepThought.calculate();
System.out.printin(deepThought.getResult());

public void testCalculation() {
deepThought.calculate();
assertEquals(42, deepThought.getResult());

Redundant Assertions

» Always true or always false assertions

» Introduced by mistake or for debugging
purposes

Redundant Assertions

public void testSomething() {
assertEquals(10.0, updatedEntity.getQuantity(), Double. MAX_ VALUE);
assertTrue(true);

public void testSomething() {
assertTrue(existingServiceEntryTOs.size() == 0);
assertNotNull(existingServiceEntryTOSs);

Using the Wrong Assert

» There is more than assertTrue
» Java assert keyword

Using the Wrong Assert

assertTrue("Objects must be the same", expected == actual);
assertTrue("Objects must be equal”, expected.equals(actual));
assertTrue("Object must be null", actual == null);
assertTrue("Object must not be null", actual !'= null);

assertSame (“Objectsmustbe-the-same”, expected, actual);
assertEquals(*Objectsmustbe-egual”, expected, actual);
assertNull(*objeetmustbenull, actual);
assertNotNull(*Objeetmustnotbenull, actual);

Only Easy/Happy Path Tests

» Only expected behavior is tested
» Only easy to verify things are tested

» The Liar, The Dodger, Success Against All
Odds

Only Easy/Happy Path Tests

@Test
public void testGoodCase()

{
Assert.assertEquals(2.0, Math.sqrt(4.0), 0.0);

}

@Test
public void testinteger()

{

Integer intToTest = new Integer(10);
Assert.assertEquals(intToTest.intValue(), 10);

}

Complex Tests

» Same rules like for production code

» Excessive Setup, The Giant, The Mockery,
The Nitpicker, The Stranger, The Free Ride,
The One, The Slow Poke

C ierity

Complex Tests

In general, you should refactor a test until it
can be easily recognised to follow the
general structure:

Set up

Declare the expected results
Excercise the unit under test
Get the action results

Assert that the actual results match the
expected results

v vyyvyyvVvyy

(External) Dependencies

» External dependencies that code may need
to rely on to work correctly.

» Dependencies between tests — one test
prepares data for other one.

» Dependencies to object internal state

» The Inspector, Generous Leftovers, The
Local Hero, The Operating System
Evangelist, The Sequencer, Hidden
Dependency, The Peeping Tom

(:IIEF“]J

Catching Unexpected Exceptions

» Test succeeds even if an exception is thrown
» The Liar, The Greedy Catcher

public void testCalculation() {
try {
deepThought.calculate();
assertEquals("Calculation wrong", 42, deepThought.getResult());
}
catch(CalculationException ex) {
Log.error("Calculation caused exception”, ex);

}
}

C ierity

Catching Unexpected Exceptions

public void testCalculation() {
try {
deepThought.calculate();
assertEquals("Calculation wrong", 42, deepThought.getResult());
}
catch(CalculationException ex) {
fail("Calculation caused exception");

}

C ierity

Mixing Production and Test Code

» More complex packaging
» Ability to test package private methods

Programming is like sex. One mistake
and you have to support it for the rest of your life.
~Michael Sinz

Agenda

» Motivation

» What is automatic test
» Anti-patterns catalog
» Basic mistakes

» Best practices

» Summary
» Questions

C ierity

Best Practices

» Same quality as production code
» Common sense

» No logger errors even from tests (The
Loudmouth)

» Use test coverage tools

» Do NOT be afraid to rewrite/delete
badly written complex tests

»TDD

Agenda

» Motivation

» What is automatic test
» Anti-patterns catalog
» Basic mistakes

» Best practices

» Summary
» Questions

C ierity

Summary

» Do NOT repeat mistakes

» Manual testing is boring but false
alarms are pain as well

A good programmer is someone who always
looks both ways before crossing a one-way
street. ~Doug Linder

Agenda

» Motivation

» What is automatic test
» Anti-patterns catalog
» Examples

» Best practices

» Summary
» Questions

(:IIEI'il]J
Links

» http:/len.wikipedia.org/wiki/Software_testing

» http:/lwww.exubero.com/junit/antipatterns.htmi
> http:/Iblog.james-carr.org/2006/11/03/tdd-anti-patterns/

C ierity

Questions ...

... and maybe answers

Thank you

Ing. Jiri Kiml,
21/11/2013, ZCU

(nerity

What is automatic test

» No definition in wiki ;-(
> example in eclipse

(lierity

Basic mistakes

> No tests

» Manual (missing) Assertions

» Redundant Assertions

» Using the Wrong Assert

» Only Easy/Happy Path Tests

» Complex Tests

» External Dependencies

» Catching Unexpected Exceptions
» Mixing Production and Test Code

(nerity

No tests

» Still common in many companies
> “It is to expensive to write tests.”
> “We will write tests later”. (never)
» The Liar, Success Against All Odds

(nerity

No tests

Il TODO: This tests need to be activated when nightly db-reset is done!
@lgnore

@Test

public void testXXX() {

}

@Test
public void testYYY() {

Il TODO implement me
}

(nerity

Manual (missing) Assertions

» Sysout instead of assert
» Why not just use a debugger?
» The Secret Catcher

"Debugging is twice as hard as writing the code

in the first place.
Therefore, if you write the code as cleverly as possible,

you are, by definition, not smart enough to debug it."
Brian W. Kernighan

(;I]El'il]{
Manual (missing) Assertions

public void testCalculation() {
deepThought.calculate();
System.out.printin(deepThought.getResult());

public void testCalculation() {
deepThought.calculate();
assertEquals(42, deepThought.getResult());

(nerity

Redundant Assertions

» Always true or always false assertions

» Introduced by mistake or for debugging
purposes

(nerity

Redundant Assertions

public void testSomething() {

assertEquals(10.0, updatedEntity.getQuantity(), Double.MAX_VALUE);
assertTrue(true);

public void testSomething() {
assertTrue(existingServiceEntryTOs.size() == 0);
assertNotNull(existingServiceEntryTOs);

(;I]El'il]{
Using the Wrong Assert

» There is more than assertTrue
> java assert keyword

(;I]El'il]{
Using the Wrong Assert

assertTrue("Objects must be the same", expected == actual);
assertTrue("Objects must be equal”, expected.equals(actual));
assertTrue("Object must be null", actual == null);
assertTrue("Object must not be null", actual != null);

assertSame(“Objects-must-be-the-same”, expected, actual);
assertEquals(~Objeetsmustbe-equalt, expected, actual);
assertNull(~Objeetmustbe-null, actual);
assertNotNull(*Objeet-mustret-be-nal-, actual);

(;I]El'il]{
Only Easy/Happy Path Tests

» Only expected behavior is tested
» Only easy to verify things are tested

» The Liar, The Dodger, Success Against All
Odds

(nerity

Only Easy/Happy Path Tests

@Test
public void testGoodCase()

{
}

Assert.assertEquals(2.0, Math.sqrt(4.0), 0.0);

@Test

public void testinteger()
{
Integer intToTest = new Integer(10);
Assert.assertEquals(intToTest.intValue(), 10);

}

(nerity

Complex Tests

» Same rules like for production code

» Excessive Setup, The Giant, The Mockery,
The Nitpicker, The Stranger, The Free Ride,
The One, The Slow Poke

(nerity

Complex Tests

In general, you should refactor a test until it
can be easily recognised to follow the
general structure:

Set up

Declare the expected results
Excercise the unit under test
Get the action results

Assert that the actual results match the
expected results

vvyYyyvyy

(nerity

(External) Dependencies

» External dependencies that code may need
to rely on to work correctly.

» Dependencies between tests — one test
prepares data for other one.

» Dependencies to object internal state

» The Inspector, Generous Leftovers, The
Local Hero, The Operating System
Evangelist, The Sequencer, Hidden
Dependency, The Peeping Tom

(nerity

Catching Unexpected Exceptions

» Test succeeds even if an exception is thrown
» The Liar, The Greedy Catcher

public void testCalculation() {
try {
deepThought.calculate();
assertEquals("Calculation wrong", 42, deepThought.getResult());

catch(CalculationException ex) {
Log.error("Calculation caused exception”, ex);
}
}

(nerity

Catching Unexpected Exceptions

public void testCalculation() {
try {
deepThought.calculate();
assertEquals("Calculation wrong", 42, deepThought.getResult());

catch(CalculationException ex) {
fail("Calculation caused exception");
}
}

Clerity

(nerity

Mixing Production and Test Code

» More complex packaging
» Ability to test package private methods

32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

